Continuous Acoramidis Treatment Significantly Reduced Risk of All-Cause Mortality and Cardiovascular-Related Hospitalization Through Month 42 in Participants with Wild-Type and Variant Transthyretin Amyloidosis Cardiomyopathy

Martha Grogan,¹ Amrut Ambardekar,² Justin L Grodin,³ **Lily K Stern,⁴** Prem Soman,⁵ Marianna Fontana,⁶ Pablo Garcia-Pavia,⁷ Kuangnan Xiong,⁶ Suresh Siddhanti,⁶ Jean-François Tamby,⁶ Jonathan C Fox,⁶ Nowell Fine,⁶ Mathew Maurer¹⁰

¹Mayo Clinic Rochester, Rochester, MN, USA; ²University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ³University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁴California Heart Center, Cedars-Sinai Medical Center, Beverly Hills, CA, USA; ⁵University of Pittsburgh School of Medicine, UPMC Heart and Vascular Institute, Pittsburgh, PA, USA; ⁶University College London, Royal Free Hospital, London, UK; ⁷Hospital Universitario Puerta de Hierro Majadahonda, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; ⁸BridgeBio Pharma, Inc., San Francisco, CA, USA; ⁹South Health Campus Hospital, Calgary, AB, Canada; ¹⁰Columbia University Irving Medical Center, New York, NY, USA

Presenter: Lily K Stern

Disclosures: L.K.S. has acted as a researcher for Intellia Therapeutics and Pfizer; advisor for BridgeBio Pharma (formerly Eidos Therapeutics) and Pfizer.

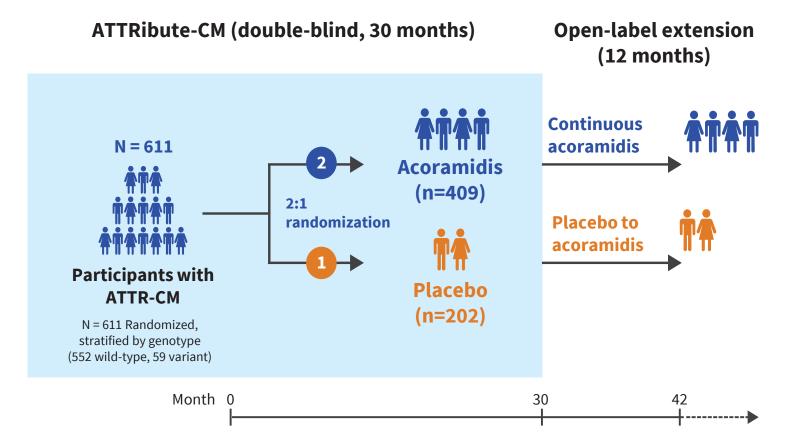
Acknowledgements:

- The authors would like to thank the patients who participated in the ATTRibute-CM OLE and their families
- The authors would also like to thank the ATTRibute-CM OLE investigators
- Under the direction of the authors, medical writing assistance was provided by Joaquin Jaramillo, MD, of Caudex, an IPG Health company, and supported by BridgeBio Pharma, Inc. Editorial support and critical review provided by Dana Walters and Shweta Rane of BridgeBio Pharma, Inc.

Introduction

- ATTR-CM can develop due to the presence of a pathogenic TTR variant (ATTRv-CM) or misfolding of the wild-type transthyretin protein (ATTRwt-CM).^{1,2} ATTRv-CM is typically associated with younger age of onset and faster progression than ATTRwt-CM³⁻⁵
- Acoramidis, an oral TTR stabilizer, achieves near-complete (≥ 90%) TTR stabilization, and is approved in the USA, Europe, Japan, and UK for treating ATTRv-CM or ATTRwt-CM in adults⁶⁻⁹
- Acoramidis reduced ACM or first CVH risk by 36% and annual CVH frequency by 50% through Month 30 versus placebo^{10,11}
- In the OLE, continuous acoramidis treatment led to risk reductions of 36% in ACM, 43% in ACM/first CVH, and 47% in first CVH through Month 42 versus switching from placebo to acoramidis¹²

O


OBJECTIVE:

To assess the effects of continuous acoramidis treatment through Month 42 on ACM and CVH in participants with ATTRv-CM or ATTRwt-CM compared to 30 months of placebo followed by acoramidis through Month 42

ACM, all-cause mortality; ATTR-CM, TTR amyloid cardiomyopathy; CVH, cardiovascular-related hospitalization; CVM, cardiovascular mortality; OLE, open-label extension; TTR, transthyretin.

1. Rapezzi C, et al. Nat Rev Cardiol 2010;7(7):398–408. 2. Sanguinetti C, et al. Biomedicines 2022;10(8):1906. 3. Lane T, et al. Circulation 2019;140:16–26. 4. Porcari A, et al. Cardiovasc Res 2023;118:3517–3535. 5. Hammarstrom P, et al. Proc Natl Acad Sci USA 2002;99(suppl 4):16427–16432. 6. BridgeBio Pharma, Inc. US PI, Acoramidis, FDA, 2024. Accessed February 12, 2025. 7. BridgeBio Pharma, Inc. Europe SmPC, Acoramidis. EMA, 2025. Accessed March 10, 2025. 8. BridgeBio Pharma, Inc. Beyonttra™ (acoramidis), the first near-complete TTR stabilizer (≥90%), approved in Japan to treat ATTR-CM. Accessed June 19, 2025. 9. Medicines and Healthcare products Regulatory Agency. Acoramidis approved to treat wild-type or variant transthyretin amyloidosis in adults with cardiomyopathy. Accessed June 19, 2025. 10. Judge DP, et al. Acoramidis improves clinical outcomes in patients With Transthyretin Amyloid Cardiomyopathy: A Post-hoc Recurrent Event Analysis of ATTRibute-CM study. Presented at the Heart Failure Society of America Annual Scientific Meeting, Sept 27–30, 2024, Atlanta, GA. 11. Gillmore JD, et al. N Eng J Med 2024;390:132–142. 12. Judge DP, et al. Circulation 2025;151(9):601–611.

ATTRibute-CM and OLE Study Design

Outcomes analyzed by Genotype through Month 42 (30 months ATTRibute-CM + 12 months OLE)^{a,b:}

- Time to first event for ACM^c
- ACM or first CVH^d
- First CVH

^aFor this study. ^bTime-to-event analyses used a stratified Cox proportional hazards model. Forest plots for HRs and associated 95% CIs by genotype used stratified Cox models with baseline 6MWD, treatment, genotype subgroup, and treatment by genotype interaction stratified by NT-proBNP and eGFR at randomization ^cACM was defined as death due to any cause, receipt of a cardiac mechanical assist device placement, or receipt of a heart transplant.

dCVH was defined as a non-elective admission to an acute care setting for cardiovascular-related morbidity that resulted in at least a 24 hour stay, or an unplanned visit to an emergency department/ward, urgent care clinic, or day clinic of fewer than 24 hours for the management of decompensated heart failure requiring treatment with an intravenous diuretic.

6MWD, 6-minute walk distance; mITT, modified intent-to-treat; R, randomized; NT-proBNP = N-terminal pro-B-type natriuretic peptide.

Baseline Characteristics at Randomization in ATTRibute-CM Were Mostly Similar

Participant characteristics ^a	ATTRv-CM ^b (n = 59)		ATTRwt-CM ^b (n = 552)	
	Acoramidis	Placebo	Acoramidis	Placebo
	n = 39 ^c	n = 20 ^c	n = 370 ^c	n = 182 ^c
Mean age, years (SD)	73.9 (7.60)	71.2 (7.84)	77.7 (6.25)	77.6 (6.32)
Male, n (%)	33 (84.6)	14 (70.0)	341 (92.2)	167 (91.8)
Duration of ATTR-CM, mean years (SD)	1.3 (1.06)	1.5 (1.07)	1.2 (1.22)	1.1 (1.21)
NYHA class, n (%)				
	2 (5.1)	1 (5.0)	49 (13.2)	16 (8.8)
l II	35 (89.7)	16 (80.0)	253 (68.4)	140 (76.9)
l III	2 (5.1)	3 (15.0)	68 (18.4)	26 (14.3)
sTTR level, mean mg/dL (SD)	17.8 (5.12)	17.2 (5.22)	23.5 (5.34)	24.3 (5.75)
NT was BND was dien a start (10B)	2326.0	2340.5	2264.5	2273.5
NT-proBNP, median pg/mL (IQR)	(1312.0-4567.0)	(1521.5–3534.0)	(1315.0-3729.0)	(1105.0–3590.0)
6MWD, mean meters (SD)	364.6 (94.93)	354.7 (97.07)	362.6 (104.49)	351.2 (93.74)
Concomitant tafamidis, ^d n (%)	4 (10.3)	4 (20.0)	57 (15.4)	42 (23.1)

- The three most common ATTRv-CM variants were V142I (n = 35), I88L (n = 7), and T80A (n = 5)
- 380 of 611 participants in the mITT population entered the OLE
- On entry into the OLE, NT-proBNP and NYHA Class III were higher for placebo to acoramidis vs continuous acoramidis

^aData are for the full analysis set, which included the modified intention-to-treat population in ATTRibute-CM (Efficacy and Safety of AG10 in Subjects With Transthyretin Amyloid Cardiomyopathy), which was defined as all participants who were randomized to accoramidis or placebo, received ≥1 dose of accoramidis or placebo, had ≥1 efficacy evaluation after baseline, and had a baseline estimated glomerular filtration rate (eGFR) of ≥30 mL/1.73 m². ^bGenotype based on information at randomization. ^cn values vary slightly for various characteristics based on available data. ^dConcomitant tafamidis was allowed after Month 12 of the double-blind period of ATTRibute-CM, but was prohibited during the OLE.

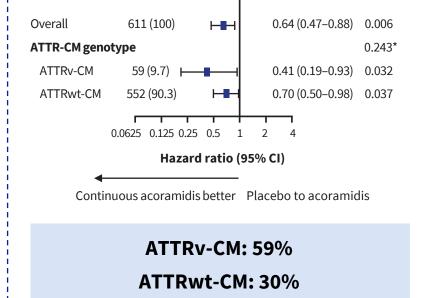
Continuous Acoramidis Reduced the Risk of ACM and CVH Through Month 42 Versus Placebo to Acoramidis Regardless of Genotype (mITT^a Population)

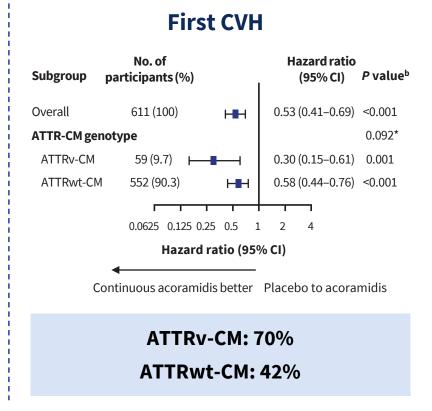
Risk reductions through Month 42 with continuous acoramidis compared with placebo to acoramidis:

No. of

participants (%)

Subgroup


ACM


Hazard ratio

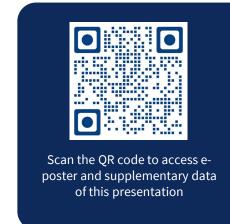
(95% CI)

P valueb

ACM/First CVH No. of Hazard ratio participants (%) (95% CI) P valueb Subgroup Overall 611 (100) 0.57 (0.45–0.72) < 0.001 НН **ATTR-CM genotype** 0.128*ATTRy-CM 59 (9.7) 0.35 (0.18-0.67) 0.002 ATTRwt-CM 552 (90.3) 0.60 (0.47–0.77) < 0.001 0.0625 0.125 0.25 0.5 1 Hazard ratio (95% CI) Continuous acoramidis better Placebo to acoramidis **ATTRy-CM: 65%** ATTRwt-CM: 40%

amITT analysis was continuous from the start of ATTRibute-CM into the OLE. P-values with are from testing the interaction of subgroup x treatment, and other p-values are for testing the treatment difference at a given value of subgroup variable.

Conclusions


In both ATTRv-CM and ATTRwt-CM, continuous acoramidis treatment through Month 42 of the ATTRibute-CM OLE was associated with consistently lower risks of ACM, ACM/first CVH, and first CVH compared with delayed initiation

No new clinically important safety issues were identified up to 42 months^a

These findings highlight the long-term benefits of continuous acoramidis therapy regardless of variant or wild-type *TTR* genotypes, and underscore the importance of early treatment initiation

